PRACTICE QUESTIONS FOR COMPETITIVE EXAMINATIONS

(C) $-\frac{1}{3}$

(C) x < -1

(D) $-1 \le x \le 1$

A curve with equation of the form $y = ax^4 + bx^3 + cx + d$ has zero gradient at the point (0,1) and also

touches the x-axis at the point (-1,0) then the values of x for which the curve has a negative gradient are -

The lines tangent to the curves $y^3 - x^2y + 5y - 2x = 0$ and $x^4 - x^3y^2 + 5x + 2y = 0$ at the origin intersect

	SUBJECT: MATHEMATICS
	TOPIC: TANGENTS AND NORMALS
1.	Let $f(x) = x^3 + ax + b$ with $a \ne b$ and suppose the tangent lines to the graph of $f(x) = a$ and $a \ne b$ have the

(B) x < 1

same gradient. Then the value of f (1) is equal to -

(A) 0

(A) x > -1

at an angle θ equal to -

2.

3.

	(A) $\frac{\pi}{6}$	(B) $\frac{\pi}{4}$	(C) $\frac{\pi}{3}$	(D) $\frac{\pi}{2}$
4.	A 13 ft. ladder is leaning a	gainst a wall when its base s	tarts to slide away. At the in	stant when the base is 12 ft.
	away from the wall, the ba	se is moving away from the	wall at the rate of 5 ft/sec.	The rate at which the angle
	$\boldsymbol{\theta}$ between the ladder and	the ground is changing is	-	
	(A) $-\frac{12}{13}$ rad/sec.	(B) -1 rad/sec.	(C) $-\frac{13}{12}$ rad/sec.	(D) $-\frac{10}{13}$ rad/sec.
5.	The normal to the curve	$e x = a(1 + cos\theta), y = as$	$\sin \theta$ at ' θ ' always passes	through the fixed point-
	(1) (a, 0)	(2) (0, a)	(3) (0, 0)	(4) (a, a)
6.	The angle of intersection	of $x = \sqrt{y}$ and $x^3 + 6y$	= 7 at (1, 1) is -	
	1000 1000		(52)	
	(A) $\frac{\pi}{5}$	(B) $\frac{\pi}{4}$	(C) $\frac{\pi}{3}$	(D) $\frac{\pi}{2}$
	SELECT THE CORREC	T ALTERNATIVES (ONI	OR MORE THAN ON	E CORRECT ANSWERS)
7.	Which of the following p	pair(s) of curves is/are orth	nogonal.	
	(A) $y^2 = 4ax$; $y = e^{-x/2a}$	i	(B) $y^2 = 4ax$; $x^2 = 4$	ay
	(C) $xy = a^2 : x^2 - y^2 =$	b ²	(D) $y = ax ; x^2 + y^2$	$= c^2$
8.	The coordinates of the poin	t(s) on the graph of the func	tion, $f(x) = \frac{x^3}{3} - \frac{5x^2}{2} + 7x - \frac{5x^2}{2}$	4 where the tangent drawn
	cut off intercepts from the	e coordinate axes which ar	e equal in magnitude but o	opposite in sign, is -
	(A) (2,8/3)	(B) (3,7/2)	(C) (1,5/6)	(D) none
9.		gent(s) of $x^2 - y^2 = 12$ and		
	(A) $y = 3x + 4\sqrt{6}$	(B) $y = -3x + 4\sqrt{6}$	(C) $3y = x + 4\sqrt{6}$	(D) $y = -3x - 4\sqrt{6}$

(A)
$$\tan^{-1}k^2$$
 (B) $\cot^{-1}(k^2)$ (C) $\sin^{-1}\left(\frac{1}{\sqrt{1+k^4}}\right)$ (D) $\sec^{-1}\left(\sqrt{1+k^4}\right)$

at -2 as shown. The values of, a + b + c + d equals-

$$x = t^3 - 4t^2 - 3t$$
 and $y = 2t^2 + 3t - 5$ where $t \in R$

If H denotes the number of point on the curve where the tangent is horizontal and V the number of point where the tangent is vertical then-

(A)
$$H = 2$$
 and $V = 1$

(B)
$$H = 1$$
 and $V = 2$

(C)
$$H = 2$$
 and $V = 2$

(D)
$$H = 1$$
 and $V = 1$

13. Let f (x) be a nonzero function whose all successive derivative exist and are nonzero. If f (x), f '(x) and f "(x) are in G.P. and f (0) = 1, f '(0) = 1, then -

(A)
$$f'(x) \le 0 \quad \forall x \in R$$

(B)
$$f''(x) \le 1 \quad \forall x \in R$$

(C)
$$f''(0) \neq f'''(0)$$

(D)
$$f''(x) \ge 0 \quad \forall x \in \mathbb{R}$$

ASSERTION & REASON

These questions contain, Statement I (assertion) and Statement II (reason).

- (A) Statement-I is true, Statement-II is true; Statement-II is correct explanation for Statement-I.
- (B) Statement-I is true, Statement-II is true; Statement-II is NOT a correct explanation for statement-I.
- (C) Statement-I is true, Statement-II is false.
- (D) Statement-I is false, Statement-II is true.
- 14. Statement-I: The product of the ordinates to the point of tangency to the curve (1 + x²)y = 2 x, where the tangent makes equal intercept with coordinate axes is equal to 1.

Because

Statement-II: Slope of straight line making equal intercept with coordinate axis is equal to 1.

15. Statement-I: Any tangent to the curve $y = x^7 + 8x^3 + 2x + 1$ makes an acute angle with the positive x-axis.

Statement-II: Any tangent to the curve $y = a_0 x^{2n+1} + a_1 x^{2n-1} + a_2 x^{2n-3} + \dots + a_n x + 1$ makes an acute angle with the positive x-axis where $a_1, \dots, a_{n-1} \ge 0$; $a_0, a_n \ge 0$ and $n \in \mathbb{N}$.

COMPREHENSION BASED QUESTIONS

Comprehension # 1

Consider the function $f(x) = x^2 f(1) - xf'(2) + f''(3)$ such that f(0) = 2

On the basis of above information, answer the following questions :

The values of f'(1) is -

16. (A) 0 (B) 1

(C) 2

(D) 1

Equation of tangent to y = f(x) at x = 3 is -

17 (A) y = x - 7 (B) $y = \frac{x}{4} - 7$ (C) y = 4x - 7 (D) none of these

The angle of intersection of y = f(x) and $y = 2e^{2x}$ is -

18

(A) $\tan^{-1} \left(\frac{3}{4} \right)$ (B) $\tan^{-1} \left(\frac{4}{3} \right)$ (C) 0

(D) $\tan^{-1}\left(\frac{6}{7}\right)$

19. The intercepts on x-axis made by tangents to the curve, $y = \int |t| dt$, $x \in R$, which are parallel to the line y = 2x, are equal to

 $(1) \pm 1$

 $(2) \pm 2$

 $(3) \pm 3$

If $|f(x_1) - f(x_2)| \le (x_1 - x_2)^2$, for all $x_1, x_2 \in R$. Find the equation of tangent to the curve y = f(x) at the point 20.

A) y-2=0 B) x-2=0 C) x-y=0 D) x+2=0

ANSWERS

[:	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
	В	С	D	В	1	D	ACD	AB	BD	ВС	В	В	D	С	Α	Α	С	D	1	Α